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Abstract: This paper describes the Sensor Web Application 

Prototype (SWAP) system that was developed for the Earth 
Science Technology Office (ESTO). The SWAP is aimed at 
providing an initial engineering proof-of-concept prototype 
highlighting sensor collaboration, dynamic cause-effect 
relationship between sensors, dynamic reconfiguration, and 
remote monitoring of sensor webs. 

I. INTRODUCTION 

The Advanced Architectures and Automation Branch of 
NASA Goddard Space Flight Center developed the Sensor 
Web Application Prototype (SWAP) as an engineering proof-
of-concept for technologies and architectures associated with 
sensor webs.  A precise and generally accepted definition of a 
sensor web has not yet been formulated.  However, it is 
generally agreed that sensor webs have certain intrinsic 
characteristics. In the context of this prototype, a sensor web 
consists of platforms that are interconnected by a 
communications medium so that they can exchange 
commands, status, and science data. The communications 
medium used was an Ethernet local area network (LAN). In 
our prototype, the instruments consisted of several tipping 
bucket rain gauges and a weather station equipped with an 
anemometer to measure wind speed and direction. Refer to 
[1] for some interesting applications and research in the area 
of sensor webs in the government and private sectors. 

Some sensor webs may contain instruments and sensors, 
which simply perform measurements and report their data to 
a centralized computing platform. In this form of sensor web, 
at least one computing platform is collecting the data from all 
reporting sensors and synthesizing the data into one or more 
meaningful scientific products: a meteorological forecast 
model output for example.  More sophisticated sensor webs 
consist of platforms that are equipped with instruments and 
sensors that communicate with each other in order to 
influence the behavior of one or more other platforms. For 
example, a rain gauge platform may cause a river gauge 
platform to begin to measure and report water levels at a 
higher frequency to determine if flash flood conditions may 
be imminent.  This is a simple example of what has been 
called a “collaborative sensor web” and is depicted in Fig. 1. 
Collaborative sensor webs were the focus of our investigation 
for the SWAP project. 

 
 

 
Fig. 1: Collaborative Sensor Web Overview 

In a collaborative sensor web, a sensor must have some 
way of influencing the behavior of other sensors whether it be 
through data or explicit commands.  This implies that the 
sensors have some “intelligence” to them in the form of data 
processing algorithms or heuristics that can be applied to the 
measurements they are taking.  Many of the platforms that we 
investigated prior to developing the prototype were “dumb”: 
they simply made their measurements and reported the “raw” 
data to a science processor.  The concept of operation for 
these “dumb” platforms is thus very simplistic:  the sensors 
are turned on, they collect data, and at some point a scientist 
retrieves the data where it can then be processed. In order to 
transform these “dumb” sensors into “smart” sensors and thus 
allow them to collaborate for our prototype system, we 
augmented them with microprocessors and developed 
embedded software applications to provide the required 
“intelligence” and thus with an ability to influence each 
others behavior.  

The objectives of the SWAP project were to: 
§ Provide a proof of concept and feasibility of a sensor 

web. 
§ Identify near-term sensor web implementation issues 

and challenges. 
§ Identify technology gaps where additional research 

will be required to achieve sensor web goals. 
§ Assess the prototype’s candidate software 

architecture. 

II. SYSTEM OVERVIEW 

The Instrument Remote Control (IRC) [2] software 
produced by the Advanced Architectures and Automation 
Branch was used as the primary software component within 
the sensor web. IRC is a software framework for monitoring 
and controlling instruments. Prior to the SWAP project, IRC 
had only been used to monitor and control astronomical 
instruments. One of the unique features of IRC is the ability 
of users and scientists to easily specialize the software for 
their instruments’ needs.  The software architecture that was 
assessed for SWAP involved using IRC to control and 
monitor the sensor web.  Each of the sensor web platforms 
consisted of two components: an instrument that measured 



either rainfall or wind velocity, and a microprocessor running 
an embedded version of the IRC software to process the 
rainfall or wind velocity data.  

The Operating Missions as Nodes on the Internet (OMNI) 
project selected a variety of small processors for use with the 
sensors.  The OMNI team configured these processors to run 
with various versions of Linux and provided them to the 
SWAP software development team for installation of IRC.  
The processors were connected to the sensors (i.e., rain 
gauges, anemometer) through serial computer port 
connections. Although the processors were equipped with 
wireless IP communications in anticipation that the prototype 
might be field deployed, an Ethernet LAN was used 
throughout the development and demonstration phases of the 
prototype. 

A. Scenario 
The Sensor Web Application Prototype Scenario 

Specification [3] provides a detailed description of the 
science scenario that was used to drive the SWAP system.  A 
brief summary of this scenario is provided here. Fig. 2 depicts 
a layout of rain gauges and weather stations around Beaver 
Dam Road at the Beltsville Agricultural Research Center, 
located near GSFC.  In the spring when this prototype would 
theoretically be deployed, the rain gauges and weather 
stations would be strategically positioned to take advantage 
of the typical weather patterns for that time of year and for 
that location.  In the spring, the prevailing winds are expected 
to move from generally westerly directions (NW, W, SW) 
across the region.  Thus when storms form and travel to the 
Beaver Dam Road region from those directions, the rain 
gauges positioned furthest west would be the first to detect 
the rain and thus be able to alert the other sensors in the 
system of imminent rain and wind conditions.  Rain gauges 
positioned in the middle of the region would use the rain rate 
information as well as the wind speed and direction from a 
simulated radar system to predict the direction of the storm 
and the probability of its future appearance in their area.  
Finally, a “primary” rain gauge could synthesize the 
information from all other sensors to generate a prediction. 
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Fig. 2: Scenario Overview 

This “primary” rain gauge was so called because it was 
uniquely located near the creek at Beaver Dam Road since 
that is the location where floods have frequently occurred 
during heavy rains. 

The sensors communicate with each other and use 
information from each other to produce their own predictions 
and decisions. This is the collaborative nature of this sensor 
web.  The main objective of this scenario was to send a 
“sector scan” command to a simulated radar system.  This 
sector scan command would modify the mode of the radar 
from its nominal wide sweep mode of a broad region to a 
sector scan mode so that only the smaller region of intense 
weather conditions could be monitored and at a more 
frequent rate.  The results of the sector scan mode of the radar 
system would be very useful to a meteorologist monitoring 
the storm system and especially the rainfall amounts and rate, 
and thus the likelihood of very rapidly rising water levels in 
the creek. 
The Monitor circle in the upper right corner of Fig. 2 
represents a graphical user interface (GUI) to monitor the 
sensor web.  The GUI is not required to supporting the 
scenario, but it is a useful tool to display and monitor the real 
time events occurring at each rain gauge, the weather 
stations, and the radar simulator. 

B. Architecture 
Fig. 3 depicts the high-level architecture of the system.  

Each sensor (rain gauge or weather station) is connected to a 
small processor by a serial RS-232 cable.  The processor has 
the IRC software running under the Linux operating system. 
The Radar simulator ran on a desktop PC.  The PC in the 
lower right in the figure ran a weather station simulator since 
we only had one real weather station. Each of the systems 
were connected to the network using TCP/IP over Ethernet.  
In deployment they would use wireless IP.  
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Fig. 3: High-level Architecture 



The major challenge using IRC was to port it from a 
desktop environment to an embedded processor that could be 
fielded with the rain gauge and wind velocity instruments. A 
benefit of this architecture is that the measured data is 
processed and interpreted collocated with the instrument so 
that real-time decisions can be made based on the data the 
sensor is receiving.  The software associated with each 
platform now provides it with the capability to locally 
process the measured data and to communicate these 
measurements and platform operational status with other 
platforms. The algorithms executed by the IRC software 
interpreted the data from the local sensor as well as other 
sensors in the sensor web in order to make decisions as 
described in the Scenario Overview.   

III. HARDWARE 

The computers, described in the following sections, were 
primarily chosen for their ability to run embedded 
applications and operate in an outdoor environment.  This 
was an important consideration since it was intended that the 
sensor web might eventually be deployed to the Beaver Dam 
site. Physical dimensions, operating temperatures, and power 
consumption were therefore significant hardware selection 
criteria.  By including these processors in our project, we 
learned some of their limitations and techniques for slimming 
down the IRC software that runs on them, as well as some 
practical lessons with Linux. 

A. Tri-M MZ104 
We used four MZ104-based computers in our prototype 

from Tri-M Systems ( http://www.tri-m.com/ ).  The MZ104 
is a ZFx86, embedded pc-on-a-chip and was combined with 
other hardware, such as a disk-on-chip, on boards mounted in 
the shock-resistant “Can-tainer” pictured here. 

We worked with Tri-M machines having two different 
configurations.  One had 32MB of RAM and a 128MB disk-
on-chip, while the other three Tri-M machines featured 
64MB RAM and 64MB disk on chip.  Physical dimensions 
were 91 and 274.6 cubic inches respectively (the smaller 
container was adequate). 

Like all sensor computers in our prototype, the Tri-M 
communicated with its associated sensor via the serial port 
and with other sensor computers via Ethernet (using TCP/IP).   

Unique to the MZ104 was the LinuxMZ operating system.  
Based on Slackware 7, LinuxMZ is a hardware-specific 
Linux variant shipped pre-installed on the device.  After the 
OMNI team did some initial configuration with each Tri-M, 
the SWAP software team installed threading libraries, a Java 
virtual machine, a Linux-specific serial communications 
library, and other utilities. 

B. IDAN PC-104 
The IDAN PC-104 from Real Time Devices ( 

http://www.rtdusa.com/ ), like the Tri-M, was designed to 
operate in embedded environments, though was more 

powerful.  It featured a 233MHz Geode MMX processor 
running with 128MB RAM and a 2GB IDE disk.  With this 
hardware, the IDAN ran Red Hat Linux 6.1 and the required 
Java virtual machine and serial communications library. 

Consisting of independent modules hosting the processor, 
an Ethernet interface, disk, and power supply, the IDAN 
measures 100 cubic inches in size. 

C. Matchbox 
The Matchbox PC from Tiqit (http://www.tiqit.com/) 

promised the best packaging solution of all embedded 
computers used in our prototype.  At only 5 cubic inches (and 
weighing 3.3 ounces), the Matchbox could easily be mounted 
inside one of our rain gauges.   

In its current configuration, the Matchbox provided a 
486SX processor, 1GB IBM Microdrive, and 16MB of RAM.  
It ran the Red Hat Linux 6.2 operating system, Java virtual 
machine, and serial communications library.   

For the prototype, we used a breakout board to provide 
standard connectors to power, Ethernet, and serial ports.  In a 
fielded situation, the board can be eliminated by connecting 
directly to the 68-pin female VHDCI (Very High Density 
Cabled Interconnect) connector. 

D. Qualcomm Tipping Bucket Rain Gauge 
The Tipping Bucket Rain Gauge, from Qualimetrics 

(http://www.qualimetrics.com/ ), was used to measure rainfall 
.  The gauge features a simple see-saw like bucket at the 
bottom of a funnel which tips after 0.01 inches of rain.  The 
tip closes a switch for 100 milliseconds, sending a pulse to 
the serial line connected to the sensor computer, where IRC 
counts the pulses to determine the rain rate.  A custom serial 
cable was created to connect the rain gauge to the computer. 

The rain gauge has an accuracy of 0.5% at 0.5"/hr.  In 
windy conditions, the error is increased because the gauge 
cannot accurately collect and report all the rain that is falling 
(as some of the rain is blown over the top of the funnel).  
Algorithms within IRC were developed to account for this 
wind-induced error. 

E. R. M. Young Weather Station 
An R.M Young Weather Station 

(http://www.rmyoung.com/ ) provided wind data for our 
prototype. The weather station had other sensors attached to 
the unit butonly the wind speed and direction measurements 
were used for the sensor web prototype.  Communicating via 
a supplied junction box and a custom serial cable we 
fashioned for this project, the weather station reported wind 
speed and direction in ASCII messages sent multiple times 
per second.  IRC converted the units supplied by the weather 
station into meters per second and compass direction in 
degrees. 

The sensor had an accuracy of ±0.3 rn/s (0.6 mph) for wind 
speed and ±3 degrees for wind direction. 



IV. SOFTWARE 

A. Off-the-Shelf Libraries 
The Meteorological Applications (MetApps) is a Java 

library from the University Corporation for Atmospheric 
Research. The SWAP prototype used the MetApps library to 
calculate the distance and angle between two latititude and 
longitude points to predict the direction and location of the 
storm. It was also used to draw the wind barbs onto the 
weather map used in the Monitor GUI. 

The IRC software was developed using the Java 2 Standard 
Edition from Sun Microsystems. Java provided the capability 
to easily port the IRC software to different operating systems. 
The machines used within the prototype were configured 
differently including varying amounts of memory and disk 
space. On machines with little disk space we needed to slim 
down the installed Java Runtime Environment (JRE). To 
reduce the needed disk space for the JRE we removed some 
Java libraries that were not needed such as the Java graphics 
toolkit. 

IRC uses other COTS products such as the Apache Xerces 
parser, but those are not discussed in this paper since they 
were not specific to the SWAP project goals or development. 

B. Instrument Remote Control 
IRC is a framework for controlling and monitoring 

instruments that may be distributed across a network. The 
software architecture combines the platform independent 
processing capabilities of Java with the power of the 
Extensible Markup Language (XML), a human readable and 
machine understandable way to describe structured data. A 
key aspect of the architecture is that the software is driven by 
an instrument description, written using the Instrument 
Markup Language (IML), a dialect of XML. IML is used to 
describe the command sets and command formats of the 
instrument, communication mechanisms, format of the data 
coming from the instrument, and characteristics of the 
graphical user interface to control and monitor the 
instrument. Additionally, the IRC framework allows the users 
to define a data analysis pipeline, which converts data coming 
out of the instrument.  

 IRC provided a quick and easy way to get the sensors up 
in a network communicating with each other. In this context, 
a sensor is a single running instance of IRC in combination 
with either a physical sensor such as a rain gauge or a set of 
code to provide simulation routines.  

To better understand what work was required to get a 
sensor up and running, we need to briefly describe how IRC 
uses IML.  The main idea behind IRC and IML is to be able 
to describe an instrument and as a result have software that 
will allow you to communicate with that instrument. Fig. 4 is 
a high-level diagram that provides some insight into what is 
needed to describe a sensor. 
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A single sensor can contain up to two IML descriptions as 

indicated in Fig. 4. The Private Interface describes how the 
sensor will communicate with other things in order to do its 
job. For example, a Rain Gauge Sensor which is depicted by 
the IRC circle above needs to communicate with the actual 
hardware rain gauge so that it can do things such as calculate 
the rate at which it is raining. The second IML description is 
called a Public Interface and it describes how something else 
can communicate with the Rain Gauge Sensor to receive rain 
rates.  

In the configuration depicted by Fig. 4, the Rain Gauge 
Sensor will receive some type of data each time the actual 
rain gauge hardware tips, which signals 0.01 inches of rain 
has been collected. The Rain Gauge Sensor would then need 
to do some data analysis and execute an algorithm to 
determine the rain rate. IRC provides the Pipeline Algorithm 
Markup Language (PAML), an XML dialect, to plug in 
science algorithms that operate on the data. PAML provides 
the list of available custom algorithm types to IRC.  

At runtime IRC provides a means to string two or more 
data analysis algorithms together into what is called a 
“pipeline”. The beginning of this data analysis pipeline is 
data that is flowing into the sensor data ports.  For the SWAP 
prototype each sensor had a predefined pipeline configuration 
executed at system start time. Fig. 5 shows the internal 
software configuration of a Rain Gauge Sensor. 

 
Fig. 5: Rain Gauge Sensor Internals 

 
 
 



In our example the Rain Gauge Sensor is receiving the 
following types of data: 

§ Rain gauge hardware sends a pulse whenever the 
bucket tips. 

§ Another Rain Gauge Sensor is sending rain rates.  
§ Weather Station Sensor is sending ground wind 

speed and direction. 
§ Radar Sensor is sending atmospheric wind direction 

and speed. 
In the case of the Rain Gauge Sensor there is only one 

algorithm. All the data coming in the data ports is sent to a 
Rain Rate algorithm. The Rain Rate algorithm can then 
produce predictions and rain rates. The Rain Rate algorithm 
output is then sent out a data port to any other sensor 
connected to the Rain Gauge Sensor. 

1. Commands and IML 
As described earlier, IML is used to describe instruments 

including the commands that an instrument accepts. IRC 
provides the framework to send a command to an instrument. 
In addition to IRC providing the framework to send 
commands to an instrument, IRC also has the capability to 
accept commands.  

In the case of SWAP, neither the rain gauge hardware nor 
the weather station hardware accepted any commands; both 
simply transmitted data. In order to accept a custom 
command in IRC, first the command must be described in 
IML. Once the command is described, the logic to fulfill the 
command request is developed. The following describes the 
commands implemented for the SWAP prototype and how 
each command was used. We also describe the effort that is 
required to add custom command handling within IRC. 

a) Get Sensor Location and ID – 
Each sensor was located in some physical location. The 

location of each rain gauge and weather station was described 
in latitude and longitude. Additionally, each sensor in the 
web contained a unique identifier (ID). Typically, an ID 
would be something like RG1, representing rain gauge 1. 
Below is a simple and very basic sample of the IML required 
to add a command. 

<Command name="Get Sensor Location and ID" /> 
IML allows for the specification of various information 

such as command arguments and synchronous versus 
asynchronous command execution. Later we will see what a 
command argument looks like. 

The location command is most useful for monitoring the 
sensor web. The GUI that was used to monitor the state of the 
entire sensor web contained a map of the region surrounding 
the Beltsville Agricultural Research Center. In the scenario, 
the rain gauges and weather stations were positioned in this 
region. When the GUI started up, a command was issued to 
all of the sensors in the web to obtain the location of each 
sensor. Each sensor was able to provide a command response 

containing a location and unique ID. The location of each 
sensor was plotted onto this map. 

b) Get Sensor System Time 
Since each sensor in the web sent messages to all other 

sensors in the web, time synchronization was important when 
calculating data such as wind corrections. This command was 
a basic utility to quickly determine that the clocks on various 
machines were synchronized to within a second of each other. 

c) Set Windspeed and Direction  
The radar system used within the prototype was simulated. 

Below is a portion of the public IML file that described how 
to command the radar sensor. 

<Command name="Set Windspeed and Direction" > 

 <Field name="windSpeed" type="Integer" required="true"/> 
 <Field name="windDirection" type="Compass" 
  required="true"/> 

</Command> 

The command above was used to specify to the radar 
simulator the speed and direction of the storm it would 
generate. This command required two command arguments. 
The windSpeed command argument contains a name, type, 
and whether or not the argument is required for the command 
to be valid. The type specifies the data type of the command 
argument. For example, the windDirection value needs to be 
of type Compass. A Compass contains a value in degrees 
where 0 is north, 90 is east, and so on clockwise. 

d) Sector Scan 
The radar sensor also accepted a command to go into 

sector scan mode. This command was only sent to the radar 
sensor by the primary rain gauge sensor when its predicted 
rain rate or current rain rate exceeded some threshold rate. 
Recall from earlier that the primary rain gauge was called the 
primary because it is located near the creek at Beaver Dam 
Road that typically floods during heavy rains in that area.  

e) Get Daily Measured Accumulation 
Each rain gauge sensor accepted a command to retrieve the 

total rain during a single day. This command was created for 
testing and convenience purposes.  

2. State Model 
Each sensor in the web maintained some state information 

such as its location, unique ID, and system time. The IRC 
framework provides the capability to specify a custom state 
model that is constructed on startup. Since the state model 
was the keeper of information pertaining to several of the 
SWAP commands, it was a natural approach to use the state 
model to respond to several of the commands.  

For SWAP, two state models were created. The more 
generic SWAP state model tracked the sensors location, id, 
and system time.  The second state model was used for the 



rain gauge sensors. The rain gauge state model extended the 
functionality provided by the generic SWAP state model to 
be able to track rain pulses. The rain gauge sensor was 
responsible for processing rain rates and predictions. In order 
to calculate rain rates, information from each rain gauge 
bucket tip was needed. Every time the rain gauge hardware 
tipped, the rain gauge sensor received a notification and 
stored the time at which the tip occurred. This information 
was stored in a state model so that an algorithm could make 
use of the data to determine individual rain events, rain event 
accumulations, and rain rates.  

3. Weather Station Data Conversion 
The SWAP prototype used one weather station. It reported 

several pieces of data including barometric pressure, 
temperature, wind speed, and wind direction. The data 
coming from the weather station was received over a serial 
connection and was in a raw form. The data needed to be 
converted to usable units. We added a custom algorithm that 
would take the raw data received from the weather station 
and convert it to meters/second rather than instrument cycles.  

We chose to convert the weather station units to meters per 
second based on a survey of meteorological end user tools. 
The algorithm retrieved the wind speed and wind direction 
from the input key-value pairs. The wind speed raw value 
was in counts per 0.9994 Sec. There are 6 counts per 
revolution, and each revolution represents 29.4 cm of air 
movement. The wind direction raw value was already 
corrected by the compass reading, in tenths of a degree. The 
conversion was as follows: 

Wind direction (degrees)= (raw wind direction) * 0.1  
 
Wind speed (meters per second)  =  (((((raw wind speed) / 

6.0)  *  29.4) / 0.9994) / 100.0) 
 
The algorithm would then output new key value pairs for 

wind speed and wind direction in meters per second and 
degrees respectfully.  

4. Rain Rate Algorithm 
The Rain Rate algorithm has several functions to perform. 

In general, its function is to determine rain event rain rates 
and predictions. The SWAP software team met with scientists 
from NASA GSFC’s Mesoscale Atmospheric Processes 
Branch , Code 912, to determine how we should calculate 
rain rates. The scientists explained the notion of rain pulses 
and rain events. In summary, a rain pulse is considered to be 
a single bucket tip from the rain gauge. A rain pulse accounts 
for a specified amount of rain accumulation. In our case, each 
tip represented 0.01 inches of rain. A rain event represents a 
single rain “storm” and is comprised of a series of time 
stamped rain pulses. Typically, we only calculate a rain rate 
for a single rain event. Imagine if it rains early in the morning 
and then again in the late afternoon. Two separate rain events 

have occurred and therefore we would be interested in the 
intensity of each storm individually. A specified period of 
time is used to determine when one rain event ends and 
another begins. Once the specified amount of time occurs 
between rain pulses a new event is created. In a real 
operational environment, a half hour between pulses 
constitutes a new rain event.  

The next factor to think about when determining rain rates 
is the ground wind. If the winds exceed a certain rate then the 
rain gauge is not collecting as much rain as is really falling. 
After consulting the NASA scientists we learned that 
adjusting the rain rates for the ground wind is very 
complicated and can potentially introduce errors in the data. 
With this in mind, it was decided that since this was a 
prototype about sensors interacting and making use of each 
others data, we would not worry about the absolute scientific 
correctness for ground wind correction. Rather, we came up 
with a simplistic way to adjust the rain rates to account for 
ground winds, which is discussed under Wind Corrections.  

5. Predicted Rain Rates 
The predicted rain rate algorithm receives data from all of 

the other rain gauge sensors in addition to the radar sensor. 
The algorithm has information about the movement of the 
storm based on the storm velocity (i.e. wind speed and 
direction) provided by the radar system simulator.   

When the algorithm receives messages that it is raining at a 
remote rain gauge, it will look at the most recent data it has 
received from the radar sensor and determine if it is in the 
path of the storm. If it determines that it is in the path of the 
storm, it simply assumes that the rate at which it is raining at 
the remote rain gauge sensor is the rate at which it will 
eventually be raining at it. If it is not in the storm path then it 
has no predicted rain rate.  

In addition to predicting a rain rate, it will also predict the 
time it will start to rain at its location. The message from the 
remote rain gauge sensor contains the remote sensor location. 
To determine when it will start raining at the local rain gauge, 
the algorithm will determine the distance between itself and 
the remote rain gauges. The algorithm makes use of the wind 
speed (meters per second) from the radar data to determine 
how long it will take for the storm to arrive. The algorithm 
applies a basic [ (Rate * Time) = Distance ] formula to 
predict the time when it will start raining. 

6. Wind Corrections 
Wind corrections are accounted for within the rain rate 

algorithm. When a rain gauge sensor receives data from a 
weather station sensor, it will determine if the wind data is 
applicable, based on the proximity between itself and the 
weather station. If the winds exceed a certain rate, then the 
rain gauge is not collecting as much rain as is really falling. 
The wind data is stored in the sensor’s state model for use by 
the rain rate algorithm.  



The SWAP prototype made some assumptions to greatly 
simplify the handling of ground wind data.  The algorithm is 
not accurate from a scientific standpoint. The goal of the 
prototype was not to necessarily provide accurate 
meteorological algorithms, but rather to have different types 
of sensors sharing and making use of each others’ data. A 
simple lookup table approach was used to store ranges of 
values with percentages of rate adjustments. 

When the rain rate algorithm receives a new rain pulse, it 
will query the state model to determine if there is any wind 
data that could be applied to adjust the pulse amount. If wind 
data is available, then the average wind speed between the 
previous rain event pulse and the new pulse is calculated. The 
average wind speed and the parameter set are used to adjust 
the pulse amount. In the case where we have wind data but it 
is the first pulse in the event, we take the average of the wind 
data that precedes the new rain pulse by a few seconds.  

7. Radar Simulator 
Since the SWAP prototype was demonstrated in a 

controlled setting, we did not have access to a real radar 
system. We needed to have control of when it was raining 
and where the storm was moving to demonstrate the SWAP 
prototype.  

The SWAP prototype constructed a radar simulator to play 
two key roles within the scenario. The radar simulator 
provided atmospheric wind direction and speed so the rain 
gauge sensors could predict movement of the storm. 
Additionally, the simulator accepted and responded to the 
sector scan command. 

The SWAP team briefly investigated radar systems to 
determine the nature of the data that they produce. Based on 
the investigation, a radar simulator was built that was capable 
of parsing real vector wind profile files from the National 
Weather Service. We constructed a simulated data file so that 
we could control the movement of the storm. 

IRC was used to represent the radar sensor and to also 
simulate the radar system. The radar data simulation was easy 
to create given the IRC pipeline and algorithm capabilities. 
We constructed a radar simulation algorithm by simply 
describing a new algorithm in PAML and then coding the 
logic. This algorithm stored state information, generated data 
when requested, and responded to the sector scan command 
when the sector scan command was received from the 
primary rain gauge. 

8. Weather Station and Rain Gauge Simulators 
In addition to simulating the radar system data, the SWAP 

prototype was also capable of simulating rain gauge bucket 
tips and raw weather station data. There are three reasons 
behind building these simulators. First, although the SWAP 
prototype was originally supposed to include two weather 
stations, we only received one. Therefore, to keep the 
scenario as originally planned, we simulated the second 

weather station. Second, the computers that were to be 
connected to the rain gauges and weather stations were 
received only a few weeks prior to the SWAP prototype 
demonstration. Thus, for testing purposes, the simulators 
provided a means to fully test the scenario without actually 
using true weather station and rain gauges. When the time 
came to actually connect all of the hardware contained in the 
prototype, the software was already tested.  

3.10 Weather Map 
The final piece of functionality that was added to complete 

the software for the SWAP prototype was a sensor web 
monitoring system.  The monitoring system provides a 
graphical weather map to display status of the complete 
sensor web. Fig. 6 depicts the weather map monitoring 
system.  

Fig. 6 is a complete IRC screenshot. On the left side of the 
image is the default IRC commanding tree. Each sensor is 
contained in the commanding tree, and the radar sensor 
commands are expanded. The default IRC GUI provided a 
means to configure the storm movement by issuing a “Set 
Windspeed and Direction” command to the radar sensor.  The 
only custom portion of this interface is the weather map. The 
weather map algorithm received data from the rain gauge 
sensors, weather station sensors, and radar simulator in order 
to plot their locations and show the rain rates at each location. 

V. LESSONS LEARNED 

The SWAP prototype demonstrated that collaborative 
sensor webs using existing sensors can be developed.  The 
sensors must be augmented with additional processing and 
software to use data from other sensors in the network.  The 
following sections provide additional technical lessons 
learned relative to the actual implementation of the “smart 
sensors” using our candidate architecture. 

 
 
 
 

 
Fig. 6: Sensor Web Monitoring System 



 

A. Assessment of IRC-based Architecture. 
IRC provided the software architecture and framework that 

allowed for the SWAP prototype to be constructed and 
functional in such a short period of time. The complete 
prototype was functional within approximately three and half 
calendar months, using only 1.5 FTE (full-time equivalent) 
software engineers. Without IRC this would not have been 
possible. IRC is a viable component in a sensor web for the 
command and control of the individual sensors. Specifically, 
through the use of IML IRC provided the communications 
fabric that enabled the sensors to communicate and share data 
very quickly. Several key conclusions relative to using IRC 
within a sensor web are listed below. 

§ IRC provided a framework that made it easy to 
quickly communicate with the rain gauges and 
weather stations.  

§ IRC can be used to simulate new sensors / 
instruments. Adding simulators for the sensor web 
prototype proved to be very simple and extremely 
useful. The simulators provided a great way to test 
the software. As sensor webs are further explored it 
will be critical to be able to simulate instruments, 
because critical testing can be performed prior to the 
purchase of potentially expensive hardware. 

§ IRC can be made to run on small devices but 
additional work needs to be performed to tune the 
performance of the software in an embedded 
processor environment. 
 
For example, the sensors communicated with one 
another using TCP communications. TCP is a 
connection-oriented protocol and therefore slows 
communications.  Another approach would be to 
explore UDP, which is a connectionless 
communication protocol. IRC provides the 
framework to add additional communication 
protocols. 
 
Additionally, XML parsing needs to be re-evaluated 
as a means to tune IRC performance. All of the 
XML and PAML files are parsed and validated each 
time IRC is started. It would be nice to remove the 
need to validate the documents. Validation during 
parsing consumes a large amount of memory during 
startup. If the files were developed using the IRC 
Configuration Editor, we know that they are 
syntactically correct, so we could skip the validation 
step during parsing. 
 
The number of threads needs to be reduced.  The 
small processors could not handle the amount of 
memory and system resources that IRC was 
consuming. As an extensible architecture, there are 

many places for plugging in new modules.  Many of 
these points of extension are accomplished through a 
publish and subscribe mechanism which uses a 
couple of threads per instantiation of subscribers.  
The use of threads needs to be evaluated to ensure 
that new threads of execution are used only when 
necessary.  

B. Implementation issues and challenges 

1. Defining the algorithms is the greatest challenge. 
IRC provides the framework for constructing new 

algorithms and for passing information to other algorithms 
and instruments. The biggest challenge was to identify the 
appropriate science algorithms for the scenario that was 
simulated.  To determine the characteristics of the algorithms 
to be used for the SWAP prototype, the software team 
consulted NASA scientists to determine the conditions that 
would establish when each individual storm begins and ends. 
Additionally, they consulted with scientists to determine how 
rain rates should be calculated and how ground winds affect 
rain rates.  Currently, the process to adjust rain rates based on 
ground winds is being investigated, and does not have a 
definitive answer. Therefore, for the prototype we provided a 
simple approach that was not scientifically meaningful.  

2. Scalability 
The SWAP prototype consisted of only eight sensors, in 

addition to the monitoring GUI. The sensor web was small 
and thus provided a convenient testbed for determining how 
sensors could share data. As a sensor web grows in scale, the 
number of interactions will increase significantly, and it will 
certainly become more complex to study and evaluate the 
total number of processing and communications states that it 
can theoretically possess. A key problem moving forward 
will be planning for problems with many remote sensors 
communicating together toward a common goal. IRC does 
not currently address many issues that would arise in a large 
sensor web. For example, sensors will have to be added or 
removed without disrupting the entire sensor web. Network 
traffic loads will vary depending upon the number of 
available multiple modes of sensor-sensor interaction.  IRC 
needs to be able to dynamically adjust to these mode changes 
instead of establishing a set of static conditions at startup 
time.  During the demonstration, we eliminated some of the 
connections to enable IRC to run more efficiently and to 
minimize any possibility of running out of available resources 
(e.g., memory, disk storage) without further optimization of 
communication ports and protocols. In conclusion, although 
IRC was used successfully to prototype a small sensor web, it 
would not in its present form be able to support a large 
number of sensors that have limited resources (i.e., memory 
and disk). 



3. Porting IRC to Linux  
Porting IRC to Linux was easy. It simply required 

installation of two sets of libraries.  First, we needed a Linux 
implementation of the Java CommAPI, which is used in IRC 
for serial port communications.  The RXTX library ( 
http://www.rxtx.org/ ), available under the LGPL license, 
provided this support.  Second, we needed libraries to support 
native Linux threads, though only on the LinuxMZ machines 
(RedHat Linux already provided them).  Since LinuxMZ is 
based on Slackware 7, we used libraries obtained from their 
site ( http://www.slackware.org/ ). 

4. Sensor Web Weather Mapping 
Implementation of a weather sensor web would require a 

more sophisticated user interface.  We recommend 
integrating an existing 3rd party application or library for this 
purpose.  A candidate is MetApps (Meteorological 
Applications), some of whose components were used in this 
prototype. 

C. Technology Gaps 
The variety of sensor computers we employed presented us 

with various challenges, successes, and failures.   
§ The IDAN machine performed flawlessly 

throughout the project, keeping up with the volume 
of data, algorithms, and communications with other 
sensors.   

§ The Tri-M machines gave mixed results.  During 
installation we trimmed the JVM and IRC to fit on 
the 64MB disk.  While testing we experienced slow 
startup times (~3 minutes), intermittent errors in the 
Linux threading library, and occasional system 
failures due to static electricity.   

§ With only 16MB of RAM, the Matchbox PC could 
not keep up with the demands of standard Java and 
IRC.  It rarely reported its data to the sensor web, 
even after minimizing the number of connections it 
needed to make to other computers.  Despite this 
performance, the Matchbox was reliable. 

As a result, we identified the optimum configuration for 
current SWAP implementation as 64 MB RAM and 128 MB 
disk.  When taking into account its size, reliability, and 
ability to run standard Red Hat Linux, future iterations of the 
Matchbox would be ideally-suited.  As of this writing, 
however, a 32MB RAM Matchbox PC is the next planned 
release. 

There are other approaches to reduce SWAP’s hardware 
requirements.  Research areas include the following: 

§ Test with Java Standard Edition 1.4 – it reduces the 
need for a thread per TCP/IP connection; this may 
reduce runtime resource needs and allow for full 
communication between all sensors 

§ Identify tuning opportunities within IRC – startup 
times & memory usage for IRC might be reduced, 

for example, by optimizing or replacing the XML 
parsing with another approach 

§ Experiment with Java 2 Micro Edition -- the CDC 
(Connected Device Configuration) with the 
Foundation Profile is the best place to start our 
research. Together, they are the closest to the J2SE 
feature-wise, and are also only one of two 
combinations available for Linux at the moment (at 
least from Sun). The CDC is intended for 32-bit 
microprocessor/controller with more than 2.0MB of 
total memory. 
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